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The Use of Atomic Radii in the Discussion of Interatomic Distances
and Lattice Constants of Crystals*

By Linus PAvuLiNg
Gates and Crellin Laboratories of Chemistry, California Institute of Technology, Pasadena, California, U.S.A.

(Received 21 May 1957)

The system that has been used by various authors in the past for discussing interatomic distances
and lattice constants of crystals in terms of atomic radii is described. It is pointed out that in
recent papers Geller has discussed the lattice constants of compounds with the f-wolfram structure

in a way that deviates from past usage.

The discussion of lattice constants given in two recent
papers (Geller, 1956, 1957) is of such a nature as to
indicate the need for a recapitulation of the procedure
that has been generally used in the past for discussing
interatomic distances and lattice constants of crystals
in terms of atomic radii.

During past decades many investigators (Bragg,
Goldschmidt, Wyckoff, Huggins, and others) have
made use of atomic radii in the discussion of inter-
atomic distances in crystals and molecules. It has been
found that the distance between two atoms A and B
can often be satisfactorily represented as the sum of
two terms, r, and rz, which may be called the radii
of the atoms. There is no doubt that in general the
expression of an interatomic distance as the sum of
two radii represents a good approximation, and that
whenever a deviation from this additivity in inter-
atomic distances is found one should look for a cause
for it. In particular, in crystals with different structure
the bonding power of the atom may be distributed
in different ways among the bonds that it forms. One
method of discussing interatomic distances in metals
and intermetallic compounds in terms of atomic radii
and the nature of the bonds involved has been ex-
tensively developed (Pauling, 1947, 1949, 1950).

It may be expected that in a crystal containing
elements of two kinds, 4 and B, various interatomic
distances A-A4, A-B, and B-B may be represented
as the sum of the two radii corresponding to the two
atoms in contact. This additivity of interatomic
distances does not, however, lead in general to an
additivity in lattice constants}. Let us consider the

* Contribution No. 2208 from the Gates and Crellin Labo-
ratories.

T The alkali halogenide crystals provide interesting ex-
amples of deviation from additivity. For several of these
crystals the values of the lattice constants correspond to
additivity in the cation-anion distances. It was pointed out
by Landé (1920), however, that in lithium iodide the lattice
constant is determined by contact between the iodide ions,
and that the distance between the lithium ion and the iodide
ion is several percent larger than the expected contact dis-
tance. Also, in several of the alkali halogenide crystals there
is ‘double repulsion’: the ratio of sizes of cation and anion

two metals copper and gold and their alloys. Copper
crystallizes with the cubic close-packed structure with
a, = 3607 A, and gold crystallizes with the same
structure with a, = 4-070 A. The two metals form a
complete series of solid solutions with one another,
and, on annealing, some of the solid solutions assume
ordered structures. In particular, the alloy corre-
sponding to the composition CuzAu has the structure
with Au at 0,0,0 and 3Cu at 0, },3; 4,0,%; and
1, 4,0. This structure is invariant, the only para-
meter required for its description being the lattice
constant a,.

Let us predict the interatomic distances that one
would expect. The predicted Cu—Cu distance, from
the lattice constant for copper, is 2:551 A, and the
predicted Au-Au distance is 2-878 A. From additivity
(using the effective radii 1-276 A and 1-439 A for Cu
and. Au, respectively) we predict for Cu—Au the value
2715 A. In the ordered crystal CusAu each gold
atom is surrounded by twelve copper atoms, and each
copper atom is surrounded by six gold atoms and six
copper atoms. There are accordingly, per unit cell,
twelve Au~Cu contacts and twelve Cu—Cu contacts.
The nature of the structure is such, however, that these
contacts cannot have the expected interatomic dis-
tances, because the distances are required to be equal,
with the value a,/)/2. We accordingly assume that the
interatomic interactions are strained: the Cu-Cu bonds
are stretched, and the Au-Cu bonds are compressed.
If the bonds of the two different types are assumed to

is such as approximately to permit. contact between cations
and the anions ligated about them and also between the
anions; in consequence, the repulsive forces that operate are
larger than those in a crystal with other values of the radius
ratio (permitting either effective contact between cations and
anions or just between anions), and the equilibrium value of
the lattice constant is such as to cause both the cation-anion
distance and the anion—anion distance to be larger than the
values given by sums of ionic radii. The discussion of the forces
of interaction of the ions in these crystals has permitted a
theoretical treatment to be developed that leads to the
prediction of lattice constants to within about 0-2 %, including
alkali halogenide crystals with anion contact and those with
double repulsion (Pauling, 1927).
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be represented by potential functions with about the
same curvatures, equilibrium would be reached, with
equal numbers of bonds under compression and ten-
sion, at a value midway between the two predicted
interatomic distances; that is, at 2:633 A.

This argument is in agreement with experiment.
The interatomic distance 2-633 A, when multiplied
by the factor |'2, gives for a, the value 3-720 A, which
is almost exactly equal to the experimental value,
3-725 A.

We see that the lattice constant itself for the com-
pound CuzAu is not given additively by the lattice
constants of the two elements; instead, it is the
weighted average of these lattice constants in the ratio
3:1, which is the ratio of the number of atoms in the
formula CuzAu. The average interatomic distance in
this crystal is not equal to the sum of the effective
radii of the two elements Cu and Au, but is instead
equal to $rc,+4r,,; that is, to the sum of the radii
weighted according to the numbers of atoms of the
two kinds in the crystal.

This method of discussing lattice constants of
crystals in terms of the weighted averages of atomic
radii has a long history. It is identical with Vegard’s
rule for lattice constants of solid solutions (Vegard,
1921). According to Vegard’s rule, the lattice constants
of a solid solution containing z, mole fraction of A
and x4 mole fraction of B is z,a,+xzaz It is seen
that Vegard’s rule applied to the crystal CuzAu leads
to the value given above for the lattice constant, in
essential agreement with experiment.

Geller (1956) has, however, attempted to discuss
the lattice constants of compounds 4,B with the
p-woliram structure in a new and unreasonable way.
He has assumed that the lattice constants are equal
to the sums of the equally weighted atomic radii of
A and B, multiplied by the suitable geometrical
factor.

It is my opinion that it is impossible to find a
justification for this treatment. It is true that in this
crystal each atom B is in contact with twelve surround-
ing atoms 4. Each A4 is, however, in contact with
several other atoms 4, as well as with atoms B. The
situation is closely similar in nature (although not
identical) with that in the compound CugAu discussed
above. It is evident that a better treatment of the
lattice constants for these compounds can be made by
taking the weighted sums of the atomic radii; that is,
by multiplying the quantity 2r,+1r, by the proper
geometric factor. It is this treatment, which agrees
completely with the customary use of atomic radii in
discussion of interatomic distances and lattice con-
stants, that was used in my paper (Pauling, 1957).
It is not surprising that the latter treatment leads to
better agreement with experiment (mean deviation
0-004 A) than the treatment given by Geller (mean
deviation 0-010 A)*,

* Dr E. W. Hughes has kindly reported to me the result

ATOMIC RADII IN THE DISCUSSION OF INTERATOMIC DISTANCES

To illustrate the absurdity of Geller’s treatment,
we might consider a compound AB,. Geller would
predict the same lattice constant for this compound
as for a compound A4,B. (In fact, no such reciprocal
pair of compounds is known at the present time with
the B-wolfram structure.) The lattice constant of the
disordered solid solution CuAu; is found experimen-
tally to be 293 A, in agreement with prediction by
Vegard’s rule and our method of discussing interatomic
distances and lattice constants; it is 0-21 A greater
than the lattice constant for the ordered (or the dis-
ordered) phase CujAu.

In his second paper Geller (1957) has mentioned my
earlier discussions of interatomic distances in various
crystals, such as MgZn, and BaAl,, with use of the
simple additivity rule, and has suggested that this
is not compatible with the use of weighted averages
in discussing the lattice constants. It is, however,
exactly compatible with this use, as is shown by the
discussion of CuzAu given above.

Geller in both of his papers has expressed his dis-
appointment that a set of atomic radii for metals
developed ten years ago (Pauling, 1947) does not,
when applied in a simple way, reproduce completely
satisfactorily the lattice constants of the compounds
with the f-wolfram structure. I myself am disap-
pointed that the discussion of interatomic distances
in metals and interatomic compounds is not simple,
but requires consideration of such factors as strain in
bonds caused by the limitations of the geometry of
three-dimensional space, transfer of electrons from
one atom to another, and change in hybridization of
bond orbitals. I feel that it is a source of satisfaction,
rather than of dissatisfaction, that the lattice con-
stants of the 32 compounds with the 8-wolfram struc-
ture can be given with mean deviation 0-:004 A by
taking the weighted means (weights 3:1) for the atoms
A and B in the compound 4B, with use of effective

of a study made by him of the optimum values of the co-
efficients by which the radii 74 and g5 of the two kinds of
atoms in the f-wolfram structure should be multiplied to
reproduce the lattice constants of the 32 compounds. He ex-
pressed the lattice constant as a(arg-+ frg), with a+f =2,
and evaluated the parameters a, &, and f by the method of
least squares. In the first calculation he used for the radii
the values of R(L = 12) proposed in 1947 (Pauling, 1947).
The result of this calculation was

qp = 17811 x (1-42217 4+ 0-57797p) .

He then used the coefficients obtained in this way for a least-
squares evaluation of the radii of the 20 elements in the 32
compounds. These radii were found to have a mean deviation
from the radii R(L = 12) of 0-025 A, with the greatest devia-
tion 0-057 A. He then used the new values of the radii for a
least-squares re-evaluation of the coefficients, obtaining the
result
ay = 1:7808 x (1-4185r 4+ 0-581573) ,

These least-squares evaluations give for the ratio of the
coefficients of 74 and rp the values 2-46/1 and 2-44/1, re-
spectively, which are far closer to the ratio 3/1 corresponding
to the assumption made by Pauling (1957) than to that 1/1
of Geller (1956).
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radii of the 20 elements involved that differ by such
a small amount as 0-025 A (mean deviation) from the
metallic radii for ligancy 12 that were formulated for
the metals in 1947.
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Comments on the Preceding Paper by L. Pauling Entitled
«The Use of Atomic Radii, etc.”

By S. GELLER
Bell Telephone Laboratories Incorporated, Murray Hill, N. J., U.8. 4.

(Received 27 June 1957)

The writer believes that his position regarding the
various aspects of the §-W type structure has been
made abundantly clear in his two papers (Geller,
1956, 1957) and therefore, that there is no point in his
further discussing this most recent paper (Pauling,
1957).
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The Crystal Structure of AgClO,

By R. Currr, V. Ricantr AxD S. LoccHI

Department of General Chemistry, Pavia University, Pavia, Italy

(Received 31 May 1957)

The structure of AgClO, has been determined, using the Fourier difference method to locate the
chlorine and oxygen atoms. The crystals of AgClO, are orthorhombic, with four molecules in a
unit cell. The lattice constants are a = 6:07, b = 6-13, ¢ = 6-68 A, all +£0-01 A, space group
D2-_Cmma. The structure is built up of AgClO, molecules, rather than of Ag* and ClOj ions.

Introduction

The salts of chlorous acid represent a field which has
been little studied from a structural point of view.
Of preceding research, that of Levi & Scherillo
(1931; see also Wyckoff, 1951) on NH,CIO, is con-
sidered the most complete. This salt has high sym-
metry (tetragonal) but decomposes in a few hours and
cannot tolerate long exposure to X-rays.

This paper describes the study of AgClO,, which
with Pb(CIO,), represents the only anhydrous chlorite
which gives distinct crystals. AgClO, is also the most

stable salt of chlorous acid. Of other chlorites,
NaClO,.3 H,0 is being studied.

Experimental

AgClO, crystallizes in flat, rectangular laminae, or
rarely in rectangular parallelepipeds, with cleavages
parallel to (001) and (010). The crystals, which are a
shiny yellow upon preparation, become slightly black
in time. Optical examination along the z axis reveals
a strong birefringence, with n, > n,. The X.ray



